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Abstract
In this paper we study the Ginzburg–Landau (GL) equation for Fermi liquid
superconductors with strong Landau interactions F0s and F1s. We show that
Landau interactions renormalize two parameters entering the GL equation,
leading to the renormalization of the compressibility and superfluid density.
The renormalization of the superfluid density in turn leads to an unconventional
(2D) Berezinskii–Kosterlitz–Thouless (BKT) transition and vortex liquid phase.
Application of the GL equation to describe underdoped high-Tc cuprates is
discussed.

The understanding of the physics behind high-Tc cuprates remains one of the major challenges
to the condensed matter physics community nowadays [1–3]. One big mystery is the pseudo-
gap phase in underdoped cuprates, where a d-wave-like gap in the quasi-particle spectrum
exists, but the system is already a normal metal [1–3]. It has been suggested that the pseudo-
gap phase can be understood as a vortex flow state of a layered superconductor with strong
phase fluctuations [4] existing in the temperature range Tc < T < T ∗ (Tc is the superconductor
transition temperature and T ∗ is the pseudo-gap temperature). To test this idea, the Ginzburg–
Landau (GL) action for a strong coupling superconductor corresponding to the physical picture
of preformed pairs has been derived and studied [5, 6]. However the GL action is not
able to explain the different trends of Tc and T ∗ as functions of doping x in the pseudo-
gap phase, presumably due to the lack of consideration of the effect of proximity to the
Mott transition [2–4]. In this paper we shall explore this problem further by including the
effect of Landau interactions in the GL action. We shall derive the GL action for a Fermi
liquid superconductor with strong density–density and (transverse) current–current Landau
interactions F0s and F1s. The GL action we derive is applicable to general Fermi liquid
superconductors with strong Landau interactions F0s and F1s and is not restricted to high-Tc

cuprates. We shall show how Landau interactions renormalize two parameters entering the GL
action, leading to the renormalization of the superfluid density and compressibility. The effects
of Landau interactions on superfluid dynamics, including critical magnetic fields and critical
current, vortex structures and vortex liquid phase, will be examined. We show that Landau
interactions provide a natural mechanism for the separation of the temperature scales T ∗ and
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Tc in the underdoped cuprates. However, many properties of the pseudo-gap phase remain
unexplained [2, 3, 7, 8].

In Fermi liquid theory, the long-wavelength and low-frequency electromagnetic response
of a Fermi liquid superconductor to external electromagnetic perturbations can be described by
an effective Hamiltonian [9]

H = H BCS + 1

2

∑

q

N−1
F

(
F1s

k2
F

�jt(q) · �jt(−q)+ F0sn(q)n(−q)

)
(1)

where H BCS is the mean-field Bardeen–Cooper–Schrieffer (BCS) Hamiltonian, and q =
(�q, ω). NF is the density of state on the Fermi surface, kF is the Fermi momentum and F1s

and F0s are the Landau parameters describing (transverse) current–current and density–density
interactions in the system, respectively. We shall not restrict ourselves to translational invariant
systems here and therefore there is no particular relation between the Landau parameter F1s and
the effective mass m∗/m. We disregard all other Landau interactions in this paper since their
effects on the GL action are much weaker. Integrating out the fermion fields, the (transverse)
current and density responses of the system to an electromagnetic field is given by the effective
action [9]
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2

(
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F0s
ϕ2
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(2)

where T is the temperature and K0(q; T ) and χ0(q; T ) are the transverse current–current
and density–density response functions for the BCS superconductor in the absence of Landau
interactions, respectively. −K̄0(T ) = −K0(�q → 0, ω = 0; T ) and −χ̄0(T ) = −χ0(�q →
0, ω = 0; T ) are the corresponding superfluid density and compressibility of the BCS
superconductor. �A and φ are the external electromagnetic vector and scalar fields. Fictitious
gauge potentials �a and ϕ are introduced to decouple the current–current and density–density
interactions (Legendre transformation) in the third and fourth line of equation (2). In this
representation, the Landau interactions are absorbed by introducing fictitious vector and scalar
fields that couple to the BCS superconductor.

The corresponding Ginzburg Landau action is therefore of the form

SGL =
∫

dd x
∫

dt

(
− iγψ∗(∂t + ie∗(φ + ϕ))ψ + 1

2

χ̄0(0)

F0s
ϕ2

+ h̄2

2m∗

∣∣∣∣

(
∇ − i

e∗

h̄c
( �A + �a)ψ

)∣∣∣∣
2

− α(T )|ψ|2 + β

2
|ψ|4 + 1

2

K̄0(0)

G
�a2

)
, (3)

where G = F1s/(1 + F1s), which is the GL action for a BCS superconductor coupling to
the effective electromagnetic fields φ + ϕ and �A + �a. The dynamics of the fictitious gauge
fields are given by the Legendre transformation in equation (2). For weak-coupling BCS
superconductors, α(T ) ∼ ε(T 2

M/Ef), where ε = 1 − T/TM, β ∼ N−1
F (TM/Ef)

2, and
γ = γ ′ + iγ ′′, where γ ′ ∼ (TM/Ef)

2, and γ ′′ ∼ TM/Ef. TM is the mean-field (BCS)
transition temperature and Ef is the Fermi energy [5]. In the strong coupling limit, the
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GL action becomes the Gross–Pitaevski action for a gas of charge e∗ = 2e bosons, with
α(T ) → μ̄ ∼ −εEb/2 being the chemical potential for the bosons, where Eb ∼ TM is the
bound state energy for the electron pair, m∗ → 2m, γ → 1, and β → 4πab/m∗, where
ab > 0 is the (composite) boson scattering length [5]. Consistency between equations (2)
and (3) implies that K̄0(T ) = −(e∗2α)/(m∗c2β) and χ̄0(T ) = −(γ1e∗)2/β .

The fictitious gauge fields �a and ϕ can be eliminated easily from equation (3). Writing
ψ = √

ρ eiθ , we obtain

SGL →
∫

dd x
∫

dt

(
ργ (∂tθ + e∗φ)+ h̄2

2m∗ (∇
√
ρ)2 − α(T )ρ + β̄

2
ρ2

+ h̄2

2m∗
ρ

(1 + G ′(ρ))

(
∇θ − 2π

�0

�A
)2)

(4)

where �0 = hc/e∗ is the fluxoid quantum, β̄ = β(1 + F0s) and G ′(ρ) = −Gρ(T )/ρ(0),
where ρ(0) = α(T = 0)/β .

Equation (4) is the main result in this paper. We observe that the Landau interactions
renormalize two parameters in the GL action, with β → β̄ = β(1 + F0s) and the superfluid
density ρs (or London penetration depth λ−2) renormalized to

ρs(T ) = ρ(T )

(1 + G ′(ρ))
= (1 + F1s)ρ(T )

1 + F1s(1 − ρ(T )/ρ(0))
, (5)

in agreement with result from Fermi liquid theory [9].
We now discuss some general properties of the renormalized GL action. We first consider

F0s. F0s simply renormalizes the (inverse) compressibility of the system through β → β̄

with, correspondingly, χ̄0(T ) → χ̄0(T )/(1 + F0s). Notice that the velocity of the superfluid
density fluctuation (Goldstone) mode c ∼ √

ρs/χ̄0(T ) [9] is renormalized by both F0s

and F1s as a result1. The transition temperature Tc (governed by α(T )) and characteristic
(coherence) length ξ 2

A(T ) = h̄2/(2m∗α(T )) governing the gap amplitude fluctuations are
not renormalized by Landau interactions. However, the coherence length governing phase
fluctuation is renormalized, with ξP (T ) ∼ ξA(T )/

√
(1 + G ′(ρ)). The length scales governing

the amplitude and phase fluctuations separate in the presence of Landau interaction F1s. Notice
that the renormalization effects associated with F1s is proportional to ρ(T ). Therefore, at
T ∼ TM or H → Hc2, where ρ(T ) → 0, the renormalization effects of F1s become
unimportant and the only effect of Landau interaction is renormalization of β .

Next we consider critical magnetic fields and critical currents. The thermal dynamical
critical field Hc and the upper critical field Hc2 ∼ �0/2πξ 2 are not renormalized by F1s. The
latter is because ρ → 0 at H → Hc2, and F1s becomes unimportant. The lower critical field
Hc1 ∼ (�0/4πλ2) ln(λ/ξP ) is renormalized by F1s through both λ = √

(1 + G ′(ρ))λ0 and
ξP ∼ ξA/

√
(1 + G ′(ρ)), where λ0 is the London penetration depth of the corresponding pure

BCS superconductor and ξP is the effective vortex core size defined by superfluid density (see
below). In particular, for 1 + F1s < 1λ > λ0, ξP < ξA and Hc1 is reduced by F1s.

The critical current passing through a thin wire or film can be obtained by first minimizing
the free energy with fixed velocity �vs = h̄(∇θ − 2π

�0
�A) and then determining the maximum

possible supercurrent �js = e∗ρs�vs [10]. It is easy to see that the critical current is reduced
(enhanced) by nonzero F1s < (>)0, and that the reduction (enhancement) is stronger at lower
temperature. As a result, the rate of reduction of the critical current as the temperature increases
is slower (faster) than in the corresponding BCS superconductor when F1s < (>)0. The rate of

1 Notice that with long-ranged Coulomb interaction, the superfluid density fluctuation mode becomes ‘gapped’

(Anderson–Higgs mechanism) through F0s → 4πe∗2

q2 + F0s.
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Figure 1. Superfluid density ρs(r)/ρso(ρso = ρs(r → ∞)) as function of r for three values of
F1s = 1.0, 0.0,−0.5.

decrease can be fitted roughly by the formula jc(T ) ∼ jc(0)(1 − T/TM)
ν , where ν = 3/2 for

BCS superconductors, and changes continuously when F1 changes. We find numerically that
ν ∼ 1.35 for F1s = −0.9 and that there is an increase to ν ∼ 1.7 for F1s = 0.5.

Next we discuss vortices. First we consider the single vortex solution of the GL equation,
i.e., the solution of the form ψ(r, φ) = f (r) eiφ . We shall consider T = 0 for simplicity.
The separation of length scale associated with amplitude and phase fluctuations implies that
two ‘sizes’ of the vortex core can be defined. One, ∼ξA, is the size of the region where the
amplitude of the BCS wavefunction f (r) goes to zero. This is not (directly) renormalized
by Landau interaction. The other, ∼ξP , is the size of the region where the superfluid density
ρs(r) defined by equation (5) goes to zero. The two coherence lengths differ when the Landau
interaction F1s is nonzero. To see that ξP represents the core size defined by the superfluid
density, one may replace the density variable ρ by the superfluid density variable ρs in the
GL action using equation (5) and derive the corresponding GL equation in terms of ρs and
θ . Performing a small r expansion for the vortex solution (∇θ ∼ φ̂/r ), it is straightforward
to see that ξP represents the coherence length for the superfluid density. In figure 1 we show
ρs(r)/ρs(r → ∞) as a function of r/ξA at zero temperature solved numerically for three
different values of F1s = −0.5, 0, 1. The dependence of superfluid density vortex core size on
F1s is clear.

Vortex viscosity is also affected by Landau interactions. In standard Bardeen–Stephen
(BS)-type arguments [10], the vortex flow viscosity ηv is given by

ηv ∼
(

av

ξ 2

)
σL,

where av is a constant of order O(1) and ξ, σL are the effective vortex core size and normal state
conductivity for the Fermi liquid superconductor, respectively. Both ξ and σL are renormalized
by F1s, with σL ∼ (1 + F1s)

2σ0, where σ0 is the conductivity for the normal metal without
Landau interactions and ξ ∼ ξP .

The renormalized GL action provides a natural explanation for one problem faced by the
ordinary GL action (in both the weak and strong coupling limits) when applied to underdoped
high-Tc cuprates—the vanishing of the superfluid density ρs when the concentration of holes
x → 0 and the huge difference between the temperature Tc and T ∗ in the pseudo-gap phase. In
models of strong correlations, the vanishing of the superfluid density is a direct consequence of
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the proximity to a Mott insulator and is reflected in the Landau parameter F’s, with F1s ∼ x −1
at T → 0 and F0s remaining regular in gauge theories [2, 3, 11]. The superfluid density ρs is
renormalized by the same factor 1 + F1s ∼ x (equation (5)) in the GL action. For weakly
coupled layers of two-dimensional superconductors with x 
 1, the renormalization of phase
stiffness but not amplitude stiffness in the GL action implies that the temperature Tc, which
is determined by the BKT transition [12], and T ∗ ∼ TM, which is determined by the BCS
mean-field transition, separates. The BKT transition is determined by ρs and happens at a
temperature [12]

kTc ∼ h̄2

4m∗ ρs ∼ h̄2

4m∗ xρ(0),

which is much lower than the mean-field transition temperature TM. The amplitude of
the gap parameter is only weakly renormalized in this temperature regime because ξA is
unrenormalized.

We notice, however, that many properties of high-Tc cuprates are not explained by this
simple model of a Fermi liquid superconductor, which includes only F0s and F1s. First of
all, rotational symmetry is strongly broken in the Fermi surface geometry of cuprates, and the
Landau interactions F�kσ �k′σ ′ depend in general not only on the relative angle between �k and �k ′,
but also on the directions of the �k and �k ′ vectors themselves. This is not taken into account in
our simple parameterization of the Landau parameters. The strong Fermi surface asymmetry is
reflected, for example, in photoemission experiments which probe the Fermi surface structure
directly [1, 2]. The model also cannot explain the temperature dependence of the London
penetration depth λ in the low-temperature limit [2, 3] T → 0 and the apparent narrowness of
the paraconductivity regime [2, 3, 7] above Tc (∼ several Tc, see also [13]) in the pseudo-gap
phase. In the vortex liquid phase, the conductivity of the system is given in the two-fluid picture
by σ = σL +σv, where σL is the quasi-particle (normal) conductivity and σv is the vortex liquid
conductivity. In the BS picture, σv ∼ ηv/nv ∼ ( av

ξ 2
P
)σL/nv, where nv is the vortex density.

Therefore,

σ ∼ σL

(
1 + av

ξ 2
P nv

)
,

and σv dominates as long as ξ 2
P nv 
 1. At T � Tc, ξ 2

P nv ∼ e−εc/kT , where εc is the vortex
core energy. In GL theory, εc ∼ (h̄2/2m∗)(α/β) ∼ Ef � TM in the weak coupling limit and
there is a crossover to εc ∼ TM in the strong coupling limit [3]. Therefore, εc is as least of
the order of T ∗ ∼ TM and ξ 2

P nv 
 1 at temperatures T 
 T ∗, meaning that paraconductivity
should dominate over most of the pseudo-gap regime in this simple GL model. It was proposed
that the vortex core energy can be largely reduced if there exists a competing order state close in
energy to the superconducting state and the vortex core is in the state of competing order [2, 3].
In this case ξ 2

P nv can be of order O(1) at a temperature of order several Tc, resulting in a much
narrower paraconductivity regime. We shall not discuss this possibility here since it is outside
the scope of the GL action we present in this paper.

Summarizing, in this paper we have studied the effect of the Landau interactions F0s and
F1s on the Ginzburg–Landau action for superconductors. We find that F0s renormalizes the
parameter β and correspondingly the (inverse) compressibility in the GL action. The effects
of F1s on the GL action are much more interesting. It renormalizes the superfluid density and
separates the length scale for amplitude and phase fluctuations. For 1 + F1s 
 1 it provides
a natural mechanism for separation of the mean-field transition temperature (TM ∼ T ∗) and
BKT transition temperature (Tc) and this suggests that the pseudo-gap phenomenon observed in
high-Tc cuprates may be a rather general property of Fermi liquid superconductors with strong
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current renormalization, F1s < 0. We point out, however, that our simple model of a Fermi
liquid superconductor with Landau interactions F0s and F1s cannot explain many properties of
the high-Tc cuprates, and that a much more sophisticated model is needed to describe realistic
underdoped cuprates.
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